

The global environmental impacts of food and how to reduce them

Joseph Poore, 19th October 2024

PART 1 The global environmental impacts of food

Greenhouse Gas Emissions

5

4

3

2

0

-1

-2

-3

-4

-5

26% Food

Eutrophication

Source: Poore & Nemecek (2018)

78%

Food

Freshwater Use (weighted by scarcity)

> 90% Food

Source: Poore & Nemecek (2018)

Food Consumption (trillion calories per day)

Food Consumption (trillion calories per day)

PART 2 Food products and diets

Source: Poore & Nemecek (2018)

GHG Emissions kg CO₂eq

Source: Poore & Nemecek (2018)

Eutrophying Emissions kg $PO_4^{3-}eq$

Source: Poore & Nemecek (2018)

Land Use m²·year

Source: Poore & Nemecek (2018)

Source: Poore & Nemecek (2018); additional calculations for the BBC and Science Vs for oat milk, rice milk, and almond milk.

Land Per Person on Earth **17,000m²**

Land Per Person on Earth **17,000m²**

Current Diet Global 6,200m²

Land Per Person on Earth **17,000m²**

Current Diet Global 6,200m² USA 11,800m²

Source: Poore & Nemecek (2018)

Spared Land 4,700m²

Sources: Poore & Nemecek (2018); Ellis et al (2010) Gaston et al (2003); Bar-On et al (2018)

Sources: Poore & Nemecek (2018); Ellis et al (2010) Gaston et al (2003); Bar-On et al (2018); Schmidinger & Stehfest (2012)

Greenhouse Gas Emissions Per Person (tonnes CO_2eq , year = 2010)

Greenhouse Gas Emissions Per Person (tonnes CO_2eq , year = 2010)

Greenhouse Gas Emissions Per Person (tonnes CO_2eq , year = 2010)

Sources: JRC (2016); Poore & Nemecek (2019); Schmidinger & Stehfest (2012); WRI (2014); EPA (2018); Peters et al. (2012)

Greenhouse Gas Emissions Saved Per Person (tonnes CO₂eq, European averages)

PART 3 Solutions

COOL FOOD*

Early Adopters' Absolute Food-Related Emissions: Trend to 2021

 \equiv

Source: WRI (2022)

- The global environmental impacts of food are very substantial.
- But we can reduce them substantially.
- Knowledge and information will play a critical role.

